econml.iv.nnet.DeepIV
- class econml.iv.nnet.DeepIV(*, n_components, m, h, n_samples, use_upper_bound_loss=False, n_gradient_samples=0, optimizer='adam', first_stage_options={'epochs': 100}, second_stage_options={'epochs': 100})[source]
Bases:
econml._cate_estimator.BaseCateEstimator
The Deep IV Estimator (see http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf).
- Parameters
n_components (int) – Number of components in the mixture density network
m ((tensor, tensor) -> Layer) – Method for building a Keras model that featurizes the z and x inputs
h ((tensor, tensor) -> Layer) – Method for building a model of y given t and x
n_samples (int) – The number of samples to use
use_upper_bound_loss (bool, optional) – Whether to use an upper bound to the true loss (equivalent to adding a regularization penalty on the variance of h). Defaults to False.
n_gradient_samples (int, optional) – The number of separate additional samples to use when calculating the gradient. This can only be nonzero if user_upper_bound is False, in which case the gradient of the returned loss will be an unbiased estimate of the gradient of the true loss. Defaults to 0.
optimizer (str, optional) – The optimizer to use. Defaults to “adam”
first_stage_options (dictionary, optional) – The keyword arguments to pass to Keras’s fit method when training the first stage model. Defaults to {“epochs”: 100}.
second_stage_options (dictionary, optional) – The keyword arguments to pass to Keras’s fit method when training the second stage model. Defaults to {“epochs”: 100}.
- __init__(*, n_components, m, h, n_samples, use_upper_bound_loss=False, n_gradient_samples=0, optimizer='adam', first_stage_options={'epochs': 100}, second_stage_options={'epochs': 100})[source]
Methods
__init__
(*, n_components, m, h, n_samples[, ...])ate
([X])Calculate the average treatment effect \(E_X[\tau(X, T0, T1)]\).
ate_inference
([X])Inference results for the quantity \(E_X[\tau(X, T0, T1)]\) produced by the model.
ate_interval
([X, alpha])Confidence intervals for the quantity \(E_X[\tau(X, T0, T1)]\) produced by the model.
cate_feature_names
([feature_names])Public interface for getting feature names.
cate_output_names
([output_names])Public interface for getting output names.
cate_treatment_names
([treatment_names])Public interface for getting treatment names.
effect
([X, T0, T1])Calculate the heterogeneous treatment effect τ(·,·,·).
effect_inference
([X, T0, T1])Inference results for the quantities \(\tau(X, T0, T1)\) produced by the model.
effect_interval
([X, T0, T1, alpha])Confidence intervals for the quantities \(\tau(X, T0, T1)\) produced by the model.
fit
(Y, T, *, X, Z[, inference])Estimate the counterfactual model from data.
marginal_ate
(T[, X])Calculate the average marginal effect \(E_{T, X}[\partial\tau(T, X)]\).
marginal_ate_inference
(T[, X])Inference results for the quantities \(E_{T,X}[\partial \tau(T, X)]\) produced by the model.
marginal_ate_interval
(T[, X, alpha])Confidence intervals for the quantities \(E_{T,X}[\partial \tau(T, X)]\) produced by the model.
marginal_effect
(T[, X])Calculate the marginal effect ∂τ(·, ·) around a base treatment point conditional on features.
marginal_effect_inference
(T[, X])Inference results for the quantities \(\partial \tau(T, X)\) produced by the model.
marginal_effect_interval
(T[, X, alpha])Confidence intervals for the quantities \(\partial \tau(T, X)\) produced by the model.
predict
(T, X)Predict outcomes given treatment assignments and features.
Attributes
Get an instance of
DoWhyWrapper
to allow other functionalities from dowhy package.- ate(X=None, *, T0, T1)
Calculate the average treatment effect \(E_X[\tau(X, T0, T1)]\).
The effect is calculated between the two treatment points and is averaged over the population of X variables.
- Parameters
T0 ((m, d_t) matrix or vector of length m) – Base treatments for each sample
T1 ((m, d_t) matrix or vector of length m) – Target treatments for each sample
X ((m, d_x) matrix, optional) – Features for each sample
- Returns
τ – Average treatment effects on each outcome Note that when Y is a vector rather than a 2-dimensional array, the result will be a scalar
- Return type
float or (d_y,) array
- ate_inference(X=None, *, T0, T1)
Inference results for the quantity \(E_X[\tau(X, T0, T1)]\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
X ((m, d_x) matrix, optional) – Features for each sample
T0 ((m, d_t) matrix or vector of length m, default 0) – Base treatments for each sample
T1 ((m, d_t) matrix or vector of length m, default 1) – Target treatments for each sample
- Returns
PopulationSummaryResults – The inference results instance contains prediction and prediction standard error and can on demand calculate confidence interval, z statistic and p value. It can also output a dataframe summary of these inference results.
- Return type
- ate_interval(X=None, *, T0, T1, alpha=0.05)
Confidence intervals for the quantity \(E_X[\tau(X, T0, T1)]\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
X ((m, d_x) matrix, optional) – Features for each sample
T0 ((m, d_t) matrix or vector of length m, default 0) – Base treatments for each sample
T1 ((m, d_t) matrix or vector of length m, default 1) – Target treatments for each sample
alpha (float in [0, 1], default 0.05) – The overall level of confidence of the reported interval. The alpha/2, 1-alpha/2 confidence interval is reported.
- Returns
lower, upper – The lower and the upper bounds of the confidence interval for each quantity.
- Return type
tuple(type of
ate(X, T0, T1)
, type ofate(X, T0, T1))
)
- cate_feature_names(feature_names=None)
Public interface for getting feature names.
To be overriden by estimators that apply transformations the input features.
- Parameters
feature_names (list of str of length X.shape[1] or None) – The names of the input features. If None and X is a dataframe, it defaults to the column names from the dataframe.
- Returns
out_feature_names – Returns feature names.
- Return type
list of str or None
- cate_output_names(output_names=None)
Public interface for getting output names.
To be overriden by estimators that apply transformations the outputs.
- Parameters
output_names (list of str of length Y.shape[1] or None) – The names of the outcomes. If None and the Y passed to fit was a dataframe, it defaults to the column names from the dataframe.
- Returns
output_names – Returns output names.
- Return type
list of str
- cate_treatment_names(treatment_names=None)
Public interface for getting treatment names.
To be overriden by estimators that apply transformations the treatments.
- Parameters
treatment_names (list of str of length T.shape[1] or None) – The names of the treatments. If None and the T passed to fit was a dataframe, it defaults to the column names from the dataframe.
- Returns
treatment_names – Returns treatment names.
- Return type
list of str
- effect(X=None, T0=0, T1=1)[source]
Calculate the heterogeneous treatment effect τ(·,·,·).
The effect is calculated between the two treatment points conditional on a vector of features on a set of m test samples {T0ᵢ, T1ᵢ, Xᵢ}.
- Parameters
T0 ((m × dₜ) matrix) – Base treatments for each sample
T1 ((m × dₜ) matrix) – Target treatments for each sample
X ((m × dₓ) matrix, optional) – Features for each sample
- Returns
τ – Heterogeneous treatment effects on each outcome for each sample Note that when Y is a vector rather than a 2-dimensional array, the corresponding singleton dimension will be collapsed (so this method will return a vector)
- Return type
(m × d_y) matrix
- effect_inference(X=None, *, T0=0, T1=1)
Inference results for the quantities \(\tau(X, T0, T1)\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
X ((m, d_x) matrix, optional) – Features for each sample
T0 ((m, d_t) matrix or vector of length m, default 0) – Base treatments for each sample
T1 ((m, d_t) matrix or vector of length m, default 1) – Target treatments for each sample
- Returns
InferenceResults – The inference results instance contains prediction and prediction standard error and can on demand calculate confidence interval, z statistic and p value. It can also output a dataframe summary of these inference results.
- Return type
- effect_interval(X=None, *, T0=0, T1=1, alpha=0.05)
Confidence intervals for the quantities \(\tau(X, T0, T1)\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
X ((m, d_x) matrix, optional) – Features for each sample
T0 ((m, d_t) matrix or vector of length m, default 0) – Base treatments for each sample
T1 ((m, d_t) matrix or vector of length m, default 1) – Target treatments for each sample
alpha (float in [0, 1], default 0.05) – The overall level of confidence of the reported interval. The alpha/2, 1-alpha/2 confidence interval is reported.
- Returns
lower, upper – The lower and the upper bounds of the confidence interval for each quantity.
- Return type
tuple(type of
effect(X, T0, T1)
, type ofeffect(X, T0, T1))
)
- fit(Y, T, *, X, Z, inference=None)[source]
Estimate the counterfactual model from data.
That is, estimate functions τ(·, ·, ·), ∂τ(·, ·).
- Parameters
Y ((n × d_y) matrix or vector of length n) – Outcomes for each sample
T ((n × dₜ) matrix or vector of length n) – Treatments for each sample
X ((n × dₓ) matrix) – Features for each sample
Z ((n × d_z) matrix) – Instruments for each sample
inference (str,
Inference
instance, or None) – Method for performing inference. This estimator supports ‘bootstrap’ (or an instance ofBootstrapInference
)
- Return type
self
- marginal_ate(T, X=None)
Calculate the average marginal effect \(E_{T, X}[\partial\tau(T, X)]\).
The marginal effect is calculated around a base treatment point and averaged over the population of X.
- Parameters
T ((m, d_t) matrix) – Base treatments for each sample
X ((m, d_x) matrix, optional) – Features for each sample
- Returns
grad_tau – Average marginal effects on each outcome Note that when Y or T is a vector rather than a 2-dimensional array, the corresponding singleton dimensions in the output will be collapsed (e.g. if both are vectors, then the output of this method will be a scalar)
- Return type
(d_y, d_t) array
- marginal_ate_inference(T, X=None)
Inference results for the quantities \(E_{T,X}[\partial \tau(T, X)]\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
T ((m, d_t) matrix) – Base treatments for each sample
X ((m, d_x) matrix, optional) – Features for each sample
- Returns
PopulationSummaryResults – The inference results instance contains prediction and prediction standard error and can on demand calculate confidence interval, z statistic and p value. It can also output a dataframe summary of these inference results.
- Return type
- marginal_ate_interval(T, X=None, *, alpha=0.05)
Confidence intervals for the quantities \(E_{T,X}[\partial \tau(T, X)]\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
T ((m, d_t) matrix) – Base treatments for each sample
X ((m, d_x) matrix, optional) – Features for each sample
alpha (float in [0, 1], default 0.05) – The overall level of confidence of the reported interval. The alpha/2, 1-alpha/2 confidence interval is reported.
- Returns
lower, upper – The lower and the upper bounds of the confidence interval for each quantity.
- Return type
tuple(type of
marginal_ate(T, X)
, type ofmarginal_ate(T, X)
)
- marginal_effect(T, X=None)[source]
Calculate the marginal effect ∂τ(·, ·) around a base treatment point conditional on features.
- Parameters
T ((m × dₜ) matrix) – Base treatments for each sample
X ((m × dₓ) matrix, optional) – Features for each sample
- Returns
grad_tau – Heterogeneous marginal effects on each outcome for each sample Note that when Y or T is a vector rather than a 2-dimensional array, the corresponding singleton dimensions in the output will be collapsed (e.g. if both are vectors, then the output of this method will also be a vector)
- Return type
(m × d_y × dₜ) array
- marginal_effect_inference(T, X=None)
Inference results for the quantities \(\partial \tau(T, X)\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
T ((m, d_t) matrix) – Base treatments for each sample
X ((m, d_x) matrix, optional) – Features for each sample
- Returns
InferenceResults – The inference results instance contains prediction and prediction standard error and can on demand calculate confidence interval, z statistic and p value. It can also output a dataframe summary of these inference results.
- Return type
- marginal_effect_interval(T, X=None, *, alpha=0.05)
Confidence intervals for the quantities \(\partial \tau(T, X)\) produced by the model. Available only when
inference
is notNone
, when calling the fit method.- Parameters
T ((m, d_t) matrix) – Base treatments for each sample
X ((m, d_x) matrix, optional) – Features for each sample
alpha (float in [0, 1], default 0.05) – The overall level of confidence of the reported interval. The alpha/2, 1-alpha/2 confidence interval is reported.
- Returns
lower, upper – The lower and the upper bounds of the confidence interval for each quantity.
- Return type
tuple(type of
marginal_effect(T, X)
, type ofmarginal_effect(T, X)
)
- predict(T, X)[source]
Predict outcomes given treatment assignments and features.
- Parameters
T ((m × dₜ) matrix) – Base treatments for each sample
X ((m × dₓ) matrix) – Features for each sample
- Returns
Y – Outcomes for each sample Note that when Y is a vector rather than a 2-dimensional array, the corresponding singleton dimension will be collapsed (so this method will return a vector)
- Return type
(m × d_y) matrix
- property dowhy
Get an instance of
DoWhyWrapper
to allow other functionalities from dowhy package. (e.g. causal graph, refutation test, etc.)- Returns
DoWhyWrapper – An instance of
DoWhyWrapper
- Return type
instance