econml.inference.BootstrapInference
- class econml.inference.BootstrapInference(n_bootstrap_samples=100, n_jobs=- 1, bootstrap_type='pivot', verbose=0)[source]
Bases:
econml.inference._inference.Inference
Inference instance to perform bootstrapping.
This class can be used for inference with any CATE estimator.
- Parameters
n_bootstrap_samples (int, default 100) – How many draws to perform.
n_jobs (int, default -1) – The maximum number of concurrently running jobs, as in joblib.Parallel.
verbose (int, default: 0) – Verbosity level
bootstrap_type (‘percentile’, ‘pivot’, or ‘normal’, default ‘pivot’) – Bootstrap method used to compute results. ‘percentile’ will result in using the empiracal CDF of the replicated computations of the statistics. ‘pivot’ will also use the replicates but create a pivot interval that also relies on the estimate over the entire dataset. ‘normal’ will instead compute a pivot interval assuming the replicates are normally distributed.
Methods
__init__
([n_bootstrap_samples, n_jobs, ...])ate_inference
([X, T0, T1])ate_interval
([X, T0, T1, alpha])const_marginal_ate_inference
([X])const_marginal_ate_interval
([X, alpha])fit
(estimator, *args, **kwargs)Fits the inference model.
marginal_ate_inference
(T[, X])marginal_ate_interval
(T[, X, alpha])prefit
(estimator, *args, **kwargs)Performs any necessary logic before the estimator's fit has been called.
- fit(estimator, *args, **kwargs)[source]
Fits the inference model.
This is called after the estimator’s fit.
- prefit(estimator, *args, **kwargs)
Performs any necessary logic before the estimator’s fit has been called.