econml.iv.sieve.DPolynomialFeatures
- class econml.iv.sieve.DPolynomialFeatures(degree=2, interaction_only=False, include_bias=True)[source]
Bases:
sklearn.base.TransformerMixin
Featurizer that returns the derivatives of
PolynomialFeatures
features in a way that’s compatible with the expectations ofSieveTSLS
’s dt_featurizer parameter.If the input has shape (n, x) and
PolynomialFeatures.transform
returns an output of shape (n, f), thentransform()
will return an array of shape (n, x, f).- Parameters
degree (int, default = 2) – The degree of the polynomial features.
interaction_only (bool, default = False) – If true, only derivatives of interaction features are produced: features that are products of at most degree distinct input features (so not x[1] ** 2, x[0] * x[2] ** 3, etc.).
include_bias (bool, default = True) – If True (default), then include the derivative of a bias column, the feature in which all polynomial powers are zero.
Methods
__init__
([degree, interaction_only, ...])fit
(X[, y])Compute number of output features.
fit_transform
(X[, y])Fit to data, then transform it.
set_output
(*[, transform])Set output container.
transform
(X)Transform data to derivatives of polynomial features
- fit(X, y=None)[source]
Compute number of output features.
- Parameters
X (array_like, shape (n_samples, n_features)) – The data.
y (array, optional) – Not used
- Returns
self
- Return type
instance
- fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X (array-like of shape (n_samples, n_features)) – Input samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs), default=None) – Target values (None for unsupervised transformations).
**fit_params (dict) – Additional fit parameters.
- Returns
X_new – Transformed array.
- Return type
ndarray array of shape (n_samples, n_features_new)
- set_output(*, transform=None)
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters
transform ({“default”, “pandas”}, default=None) – Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
None: Transform configuration is unchanged
- Returns
self – Estimator instance.
- Return type
estimator instance
- transform(X)[source]
Transform data to derivatives of polynomial features
- Parameters
X (array_like, shape (n_samples, n_features)) – The data to transform, row by row.
- Returns
XP – The matrix of features, where n_output_features is the number of features that would be returned from
PolynomialFeatures
.- Return type
array_like, shape (n_samples, n_features, n_output_features)