References

Chernozhukov2016

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv e-prints, July 2016.

Chernozhukov2017

V. Chernozhukov, M. Goldman, V. Semenova, and M. Taddy. Orthogonal Machine Learning for Demand Estimation: High Dimensional Causal Inference in Dynamic Panels. ArXiv e-prints, December 2017.

Chernozhukov2018

V. Chernozhukov, D. Nekipelov, V. Semenova, and V. Syrgkanis. Two-Stage Estimation with a High-Dimensional Second Stage. 2018.

Hartford2017

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, 2017.

Jaggi2010

Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems. Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 471–478, 2010.

Kunzel2017

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Meta-learners for estimating heterogeneous treatment effects using machine learning. arXiv preprint arXiv:1706.03461, 2017. URL http://arxiv.org/abs/1706.03461.

Mackey2017

Lester W. Mackey, Vasilis Syrgkanis, and Ilias Zadik. Orthogonal machine learning: Power and limitations. CoRR, abs/1711.00342, 2017. URL http://arxiv.org/abs/1711.00342.

Newey2003

W. K. Newey and J. L. Powell. Instrumental variable estimation of nonparametric models. Econometrica, 71 (5): 1565–1578, 2003.

Foster2019

D. Foster and V. Syrgkanis. Orthogonal Statistical Learning. arXiv preprint arXiv:1901.09036, 2019. URL http://arxiv.org/abs/1901.09036.

Wager2018

S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), pp.1228-1242, 2018.

Athey2019

S. Athey, J. Tibshirani and S. Wager. Generalized Random Forests. Annals of Statistics, 2019

Oprescu2019

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning, 2019. URL http://proceedings.mlr.press/v97/oprescu19a.html.

Nie2017

X. Nie and S. Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. arXiv preprint arXiv:1712.04912, 2017. URL http://arxiv.org/abs/1712.04912.

Buhlmann2011

P. Bühlmann and S. van de Geer Statistics for High-Dimensional Data Springer Series in Statistics, 2011 URL https://www.springer.com/gp/book/9783642201912

Robins1994

Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association 89,846–866.

Bang

Bang, H. and Robins, J.M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61,962–972.

Tsiatis

Tsiatis AA (2006). Semiparametric Theory and Missing Data. New York: Springer; 2006.

Dudik2014

Dudík, M., Erhan, D., Langford, J., & Li, L. (2014). Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511.

Athey2017

Athey, S., & Wager, S. (2017). Efficient policy learning. arXiv preprint arXiv:1702.02896.

Friedberg2018

Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2018). Local linear forests. arXiv preprint arXiv:1807.11408.

Lundberg2017

Lundberg, S., Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. URL https://arxiv.org/abs/1705.07874