References
- Chernozhukov2016
V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv e-prints, July 2016.
- Chernozhukov2017
V. Chernozhukov, M. Goldman, V. Semenova, and M. Taddy. Orthogonal Machine Learning for Demand Estimation: High Dimensional Causal Inference in Dynamic Panels. ArXiv e-prints, December 2017.
- Chernozhukov2018
V. Chernozhukov, D. Nekipelov, V. Semenova, and V. Syrgkanis. Two-Stage Estimation with a High-Dimensional Second Stage. 2018.
- Hartford2017
Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, 2017.
- Jaggi2010
Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems. Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 471–478, 2010.
- Kunzel2017
Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Meta-learners for estimating heterogeneous treatment effects using machine learning. arXiv preprint arXiv:1706.03461, 2017. URL http://arxiv.org/abs/1706.03461.
- Mackey2017
Lester W. Mackey, Vasilis Syrgkanis, and Ilias Zadik. Orthogonal machine learning: Power and limitations. CoRR, abs/1711.00342, 2017. URL http://arxiv.org/abs/1711.00342.
- Newey2003
W. K. Newey and J. L. Powell. Instrumental variable estimation of nonparametric models. Econometrica, 71 (5): 1565–1578, 2003.
- Foster2019
D. Foster and V. Syrgkanis. Orthogonal Statistical Learning. arXiv preprint arXiv:1901.09036, 2019. URL http://arxiv.org/abs/1901.09036.
- Wager2018
S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), pp.1228-1242, 2018.
- Athey2019
S. Athey, J. Tibshirani and S. Wager. Generalized Random Forests. Annals of Statistics, 2019
- Oprescu2019
M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning, 2019. URL http://proceedings.mlr.press/v97/oprescu19a.html.
- Nie2017
X. Nie and S. Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. arXiv preprint arXiv:1712.04912, 2017. URL http://arxiv.org/abs/1712.04912.
- Buhlmann2011
P. Bühlmann and S. van de Geer Statistics for High-Dimensional Data Springer Series in Statistics, 2011 URL https://www.springer.com/gp/book/9783642201912
- Robins1994
Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association 89,846–866.
- Bang
Bang, H. and Robins, J.M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61,962–972.
- Tsiatis
Tsiatis AA (2006). Semiparametric Theory and Missing Data. New York: Springer; 2006.
- Dudik2014
Dudík, M., Erhan, D., Langford, J., & Li, L. (2014). Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511.
- Athey2017
Athey, S., & Wager, S. (2017). Efficient policy learning. arXiv preprint arXiv:1702.02896.
- Friedberg2018
Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2018). Local linear forests. arXiv preprint arXiv:1807.11408.
- Lundberg2017
Lundberg, S., Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. URL https://arxiv.org/abs/1705.07874
- Lewis2021
Lewis, G., Syrgkanis, V. (2021). Double/Debiased Machine Learning for Dynamic Treatment Effects. URL https://arxiv.org/abs/2002.07285
- Hernan2010
Hernán, Miguel A., and James M. Robins (2010). Causal inference. URL https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
- Syrgkanis2019
Syrgkanis, V., Lei, V., Oprescu, M., Hei, M., Battocchi, K., Lewis, G. (2019) Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments URL https://arxiv.org/abs/1905.10176