econml.sklearn_extensions.linear_model.MultiOutputDebiasedLasso
- class econml.sklearn_extensions.linear_model.MultiOutputDebiasedLasso(alpha='auto', n_alphas=100, alpha_cov='auto', n_alphas_cov=10, fit_intercept=True, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection='cyclic', n_jobs=None)[source]
Bases:
sklearn.multioutput.MultiOutputRegressor
Debiased MultiOutputLasso model.
Implementation was derived from <https://arxiv.org/abs/1303.0518>. Applies debiased lasso once per target. If only a flat target is passed in, it reverts to the DebiasedLasso algorithm.
- Parameters
alpha (str | float, optional. Default ‘auto’.) – Constant that multiplies the L1 term. Defaults to ‘auto’.
alpha = 0
is equivalent to an ordinary least square, solved by theLinearRegression
object. For numerical reasons, usingalpha = 0
with theLasso
object is not advised. Given this, you should use theLinearRegression
object.n_alphas (int, default 100) – How many alphas to try if alpha=’auto’
alpha_cov (str | float, default ‘auto’) – The regularization alpha that is used when constructing the pseudo inverse of the covariance matrix Theta used to for correcting the lasso coefficient. Each such regression corresponds to the regression of one feature on the remainder of the features.
n_alphas_cov (int, default 10) – How many alpha_cov to try if alpha_cov=’auto’.
fit_intercept (bool, default True) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (e.g. data is expected to be already centered).
precompute (True | False | array_like, default False) – Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument. For sparse input this option is alwaysTrue
to preserve sparsity.copy_X (bool, default True) – If
True
, X will be copied; else, it may be overwritten.max_iter (int, optional) – The maximum number of iterations
tol (float, optional) – The tolerance for the optimization: if the updates are smaller than
tol
, the optimization code checks the dual gap for optimality and continues until it is smaller thantol
.warm_start (bool, optional) – When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.
random_state (int, RandomState instance, or None, default None) – The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If
RandomState
instance, random_state is the random number generator; If None, the random number generator is theRandomState
instance used bynp.random
. Used whenselection='random'
.selection (str, default ‘cyclic’) – If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4.
n_jobs (int, optional) – How many jobs to use whenever parallelism is invoked
- coef_
Parameter vector (w in the cost function formula).
- Type
array, shape (n_targets, n_features) or (n_features,)
- selected_alpha_
Penalty chosen through cross-validation, if alpha=’auto’.
- Type
array, shape (n_targets, ) or float
- coef_stderr_
Estimated standard errors for coefficients (see
coef_
attribute).- Type
array, shape (n_targets, n_features) or (n_features, )
- intercept_stderr_
Estimated standard error intercept (see
intercept_
attribute).- Type
array, shape (n_targets, ) or float
- __init__(alpha='auto', n_alphas=100, alpha_cov='auto', n_alphas_cov=10, fit_intercept=True, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection='cyclic', n_jobs=None)[source]
Methods
__init__
([alpha, n_alphas, alpha_cov, ...])coef__interval
([alpha])Get a confidence interval bounding the fitted coefficients.
fit
(X, y[, sample_weight])Fit the multi-output debiased lasso model.
get_params
([deep])Get parameters for this estimator.
intercept__interval
([alpha])Get a confidence interval bounding the fitted intercept.
partial_fit
(X, y[, sample_weight])Incrementally fit the model to data, for each output variable.
predict
(X)Get the prediction using the debiased lasso.
predict_interval
(X[, alpha])Build prediction confidence intervals using the debiased lasso.
Get the standard error of the predictions using the debiased lasso.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_params
(**params)Set parameters for this estimator.
- coef__interval(alpha=0.05)[source]
Get a confidence interval bounding the fitted coefficients.
- Parameters
alpha (float, default 0.05) – The confidence level. Will calculate the alpha/2-quantile and the (1-alpha/2)-quantile of the parameter distribution as confidence interval
- Returns
(coef_lower, coef_upper) – Returns lower and upper interval endpoints for the coefficients.
- Return type
tuple of array, shape (n_targets, n_coefs) or (n_coefs, )
- fit(X, y, sample_weight=None)[source]
Fit the multi-output debiased lasso model.
- Parameters
X (ndarray or scipy.sparse matrix, (n_samples, n_features)) – Input data.
y (array, shape (n_samples, n_targets) or (n_samples, )) – Target. Will be cast to X’s dtype if necessary
sample_weight (numpy array of shape [n_samples]) – Individual weights for each sample. The weights will be normalized internally.
- intercept__interval(alpha=0.05)[source]
Get a confidence interval bounding the fitted intercept.
- Parameters
alpha (float, default 0.05) – The confidence level. Will calculate the alpha/2-quantile and the (1-alpha/2)-quantile of the parameter distribution as confidence interval
- Returns
(intercept_lower, intercept_upper) – Returns lower and upper interval endpoints for the intercept.
- Return type
tuple of array of size (n_targets, ) or tuple of floats
- partial_fit(X, y, sample_weight=None)
Incrementally fit the model to data, for each output variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
y ({array-like, sparse matrix} of shape (n_samples, n_outputs)) – Multi-output targets.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
- Returns
self – Returns a fitted instance.
- Return type
- predict(X)[source]
Get the prediction using the debiased lasso.
- Parameters
X (ndarray or scipy.sparse matrix, (n_samples, n_features)) – Samples.
- Returns
prediction – The prediction at each point.
- Return type
array_like, shape (n_samples, ) or (n_samples, n_targets)
- predict_interval(X, alpha=0.05)[source]
Build prediction confidence intervals using the debiased lasso.
- Parameters
X (ndarray or scipy.sparse matrix, (n_samples, n_features)) – Samples.
alpha (float in [0, 1], default 0.05) – The overall level of confidence of the reported interval. The alpha/2, 1-alpha/2 confidence interval is reported.
- Returns
(y_lower, y_upper) – Returns lower and upper interval endpoints.
- Return type
tuple of array, shape (n_samples, n_targets) or (n_samples, )
- prediction_stderr(X)[source]
Get the standard error of the predictions using the debiased lasso.
- Parameters
X (ndarray or scipy.sparse matrix, (n_samples, n_features)) – Samples.
- Returns
prediction_stderr – The standard error of each coordinate of the output at each point we predict
- Return type
array_like, shape (n_samples, ) or (n_samples, n_targets)
- score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – \(R^2\) of
self.predict(X)
w.r.t. y.- Return type
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).