econml.grf.LinearMomentGRFCriterion
- class econml.grf.LinearMomentGRFCriterion
Bases:
econml.tree._criterion.RegressionCriterion
A criterion class that estimates local parameters defined via linear moment equations of the form:
E[ m(J, A; theta(x)) | X=x] = E[ J * theta(x) - A | X=x] = 0
Calculates impurity based on heterogeneity induced on the estimated parameters, based on the proxy score defined in the Generalized Random Forest paper:
Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized random forests." The Annals of Statistics 47.2 (2019): 1148-1178 https://arxiv.org/pdf/1610.01271.pdf.
Calculates proxy labels for each sample:
rho[i] := - J(Node)^{-1} (J[i] * theta(Node) - A[i]) J(Node) := E[J[i] | X[i] in Node] theta(Node) := J(Node)^{-1} E[A[i] | X[i] in Node]
Then uses as proxy_impurity_improvement for a split (Left, Right) the quantity:
sum_{k=1}^{n_relevant_outputs} E[rho[i, k] | X[i] in Left]^2 + E[rho[i, k] | X[i] in Right]^2
Stores as node impurity the quantity:
sum_{k=1}^{n_relevant_outputs} Var(rho[i, k] | X[i] in Node) = sum_{k=1}^{n_relevant_outputs} E[rho[i, k]^2 | X[i] in Node] - E[rho[i, k] | X[i] in Node]^2
- __init__()
Methods
__init__
()