

# Causal Inference with EconML An Introduction



## Data-Driven Decision Making

- Forecasting problems use past data to predict future outcomes in the current state of the world
  - How many people will buy a video game next month?
- Causal problems ask what would happen if some policy changes
  - How many more people will buy the game if we show them an advertisement?
- These two families of questions require different approaches to data analysis

#### Correlation Patterns vs. Causal Pathways

### Correlation between Ads and Purchases

Most current machine learning tools uncover the correlation patterns between a **treatment** like seeing an advertisement and an **outcome**, like purchasing a game.



## Uncovering Causal Pathways

This correlation pattern combines multiple causal pathways

- 1. The **treatment** may have a direct causal effect on the **outcome**, for example an informative ad makes potential customers more excited about a new game.
- 2. Confounding features may influence both the probability of treatment and the outcome, creating additional non-causal correlation. For example, engaged existing customers are more likely to be strategically targeted for ads and more likely, even without the ad, to buy new games.



### Forecasting vs Causal Problems

- Forecasting: if you want to predict which customers will purchase the game, any observed correlation with other behaviors and customer features is useful
- **Causal:** if you want to estimate the treatment effect of the ad, observed correlations can be misleading

#### People + AI for Causal Inference

- **Causal modeling tools** like the ones in EconML can separate each causal pathway to measure just the treatment effect of interest.
- However, all causal inference also requires human judgement to frame the causal question and identify likely confounders.

#### Tools for Causal Inference

#### Framing a Question

- The first step in any causal analysis is posing a clear question
  - What **treatment** am I interested in?
  - What **outcome** do I want to consider?
  - What confounders might be correlated with both my outcome and my treatment?
- Even if you cannot measure all confounders, it's important to name them so you can choose an appropriate estimation strategy

## Language of Causal Inference

| VIDEO GAME EXAMPLE |                                                                    |  |
|--------------------|--------------------------------------------------------------------|--|
| Outcome (Y)        | Probability of buying a specific new game                          |  |
| Treatment (T)      | Seeing an advertisement                                            |  |
| Confounders (W)    | Current gaming habits, past purchases, customer location, platform |  |

## Method 1: Randomized Experiments

- The gold standard approach to answering causal questions is to run an experiment that randomly assigns the treatment to some customers.
- Randomization eliminates any relationship between the confounders and the probability of treatment, so any differences between treated and untreated customers can only reflect the causal treatment effect



## Random Assignment

- Pros:
  - Gold standard for isolating causal effect
  - Don't need to measure or even name confounding variables
- Cons
  - For some treatments experiments are impossible or cost prohibitive
  - In experiments, some users may not comply with their assignment
    - Customer offered a small discount may visit site repeatedly until offered a large discount
    - Customer encouraged to join a loyalty program may still not join

#### How EconML Helps with Random Assignment

- Heterogeneous treatments: EconML estimates how the *response* to the treatment varies for users with different attributes
  - Any of our <u>Estimation Methods that assume unconfoundedness</u> can also estimate heterogeneous effects from experimental data
  - See the Customer Segmentation use case for an example of interpreting individualized treatment responses
- Compliance: EconML's <u>instrumental variable tools</u> can correct estimates from experiments with imperfect compliance
  - See our Recommendation A/B Testing use case for an example of correcting experiments for compliance

## Method 2: Measure Confounders

- If you can plausibly measure all confounding influences, carefully designed statistical models can separately estimate each causal path in the graph: the effect of confounders on the treatment and the outcome, and the causal effect of the treatment on the outcome.
- This case of full observability is known as **unconfoundedness**



## **Observed Confounder Estimation**

- Pros
  - Identifies causal effects from observational data
  - Does not require either an experiment or an instrument
- Cons
  - Requires naming and measuring all confounders (or proxies for confounders)

## How EconML Helps with Observed Confounders

- Multiple ML steps within each causal model automatically estimate flexible relationships between variables
  - This flexibility makes the unconfoundedness assumption more plausible than traditional economic causal models
- Estimate heterogeneous treatment effects and consider multiple continuous or discrete treatments
  - See the Customer Segmentation use case for an example of interpreting individualized treatment responses
  - See the Attribution use case for an example of estimating the conditional effects of multiple treatments

#### Method 3: Instrumental Variables

- Sometimes you can't randomize your treatment, but you can discover randomization that happened naturally or in a related context
- Instrumental Variables (IV) estimation isolates the variation in your treatment that was generated by this random instrument
- This method is effective even in cases where you have important confounders that you cannot measure

## Method 3: Instrumental Variables

• Under the assumption that the instrument has no direct effect on the outcome, any correlation between the instrument and the outcome can only reflect a causal path **through** the treatment



## Finding a Good Instrument

IV estimation requires finding an instrument that

- 1. Has a strong direct effect on the treatment
- 2. Only correlates with the outcome through the treatment (in other words, the instrument is not correlated with any *unobserved* confounders and has no direct effect on the outcome. Correlation with observed confounders is OK.)
- Common sources of good instruments
  - Randomized experiments that are related (though perhaps not directed) to the treatment
  - Arbitrary assignment to one of many intermediaries (judges in research on sentencing, doctors for disability insurance approval, sales managers for discounts)

## IV Example 2: Effect of Discounts

- A 3D printing company wants to know the value for future sales of offering discounts to business customers
- Larger companies are more likely to get offered discounts (and more likely to purchase more in general), but some account managers are particularly likely to grant discounts.
- There are many account managers and assignment to accounts is somewhat arbitrary

| CUSTOMER RETENTION |                                                  |  |
|--------------------|--------------------------------------------------|--|
| Outcome (Y)        | Customer revenue over the next year              |  |
| Treatment (T)      | Offered discount on new products                 |  |
| Instrument (Z)     | Account manager assigned to each customer        |  |
| Confounders (W)    | Current customer size, customer growth potential |  |

## IV Example 1: Customer Retention

- Trials of different installation methods for a new app create variation across users in time to a successful installation.
- Random assignment to different installation methods (plausibly uncorrelated with future loyalty) is a good instrument for exploring the effect of time to install.

#### **CUSTOMER RETENTION**

| Outcome (Y)     | Times a customer uses an app in the 2 months after installation |
|-----------------|-----------------------------------------------------------------|
| Treatment (T)   | Time to successfully install app                                |
| Instrument (Z)  | Randomly assigned installation method                           |
| Confounders (W) | General technical skills, initial enthusiasm for the new app    |

## Instrumental Variables Estimation

#### • Pros

- Identifies causal effects from observational data
- Does not require measuring all confounders, though you should name the confounders in order to recognize a good instrument

#### • Cons

- Good instruments can be hard to find.
- If the first requirement for an instrument is barely satisfied (instrument has a weak relationship with treatment) IV estimates can be more biased than approaches using measured confounders.

### How EconML Helps with IV

- EconML's <u>instrumental variable estimators</u> automatically model relationships between the instrument, the treatment, and the outcome conditioning flexibly on other observed confounders.
- Unlike traditional economic IV methods, EconML estimators allow for individualized estimates of the responsiveness to the instrument (correcting for selection into being treated) and for responsiveness to the treatment.